Skip to main content

AI with great power comes responsibility

[PLACEHOLDER]

Generative AI continues to be front and centre of all topics. Companies continue to make an effort for making sense of the technology, investing in their teams, as well as vendors/providers in order to “crack” those use cases that will give them the advantage in this competitive market, and while we are still in this phase of the “AI revolution” where things are still getting sorted.

 

Photo by Google DeepMind on Unsplash

I bet that Uncle Ben’s advise could go beyond Peter Parker, as many of us can make use of that wisdom due to the many things that are currently happening. AI would not be the exception when using this iconic phrase from one of the best comics out there.

Uncle Ben and Peter Parker - Spiderman

A short list of products out there in the space of generated AI:


I mean, if you think, like me, that IntelliSense was/is cool, then products such as Copilot and Tabnine, will blow your mind, as you get your own “AI pair programmer” providing you with:

  • Suggestions as you code
  • Writing functions based on the comments you provided
  • Creates unit test for the code you wrote

Allowing you to accelerate the velocity of your development team. According to GitHub research, Copilot is a big success, improving focus by 74%. It also made users feel 88% more productive and efficient by automating repetitive tasks by a staggering 96%.

AI is also a game changer for how we are levering the current search engine providers, and how those tools are, and will continue to evolve because of it (Bing is a good example on how they made AI accessible as part of their search offering). This is because now users can perform their searches asking complex questions. In addition, users are able to receive personalized results, as well as receiving direct, and immediate, feedback. 


AI and its challenges

While experiencing all the great use cases and advantages that Generative AI is providing at one’s fingertips, we are also discovering new challenges (or existing ones that have immediately become more complex). Just to mention a few:

  1. Copyright issues,
  2. Lack of accuracy within the suggestions provided by the algorithm,
  3. Cheating the system/processes,
  4. Students submitting papers generated by AI systems,
  5. Candidates utilizing AI for resumes and interviews,
  6. PII data risks

The lawsuit cases appear to be just the beginning:

  • OpenAI, creators of ChatGPT, receives a lawsuit alleging it stole people’s data (for more go to the business Insider article here )
  • “Microsoft and its computer code-sharing website GitHub, as well as artificial intelligence firm OpenAI, are being sued in California. A proposed class-action lawsuit claims the firms’ AI-powered programming tool Copilot infringes copyright by using millions of lines of human-written code without proper attribution. It is the first big copyright lawsuit over AI and potential damages could exceed $9 billion.”

Conclusion

While this AI “hype” that we are experiencing can be exciting for some, scary for others, challenging for a few, as technology has accelerated faster than expected; the reality is that “Generative AI” is among us.
It will be an important aspect to adopt/tackle/leverage by companies, as well as by individuals, and therefore it needs to be used with the proper ethics and responsibility.

Trending posts

AGILE For DIGITAL AGENCIES

Introduction Some Digital agencies have a project process where waterfalls still plays a big part of it, and as far as I can tell, the tech team is usually the one suffering as they are at the last part of the chain left with limited budget and time for execution. I do believe that adopting an Agile approach could make a Digital Agency better and faster. In this article I’m presenting you just another point of view of why it make sense looking at Agile Methodology.  Why Agile for a Digital Agency? The Agile movement started in the software development industry, but it has being proven to be useful in others as well. It becomes handy for the type of business that has changing priorities, changing requirements and flexible deliverables. In the Digital Agency of today you need a different mindset. Creative will always play a huge role (“the bread and butter”). But the “big guys” need to understand that without technology there is no Digital Agency. Technical resources are

Democratizing AI

Democratizing AI is all about empowering others to use it, by making it available to them. Audiences, such as marketers in a company, will be able to access AI capabilities as part of their MarTech solutions, without the need of being technical. It could also be schools, where the younger generations are learning how to use it in responsible, secure, innovative, and creative ways. This is the year where companies, after discovery phases and teams experimenting, are looking to activate and take advantage of the AI advances. Generated with Microsoft Designer   And so, questions emerge, such as “What to democratize when leveraging AI?” There are common scenarios, as well as specific ones, that will depend on the company, and the industry they belong to. A common scenario, seen in many industries, when democratizing data is the data visualization and reporting . In digital marketing, as an example, data scientists and data analysts can automate reporting, making them available to the clien

Small Language Models

 Open source models will continue to grow in popularity. Small Language Models (SLMs) are smaller, faster to train with less compute.  They can be used for tackling specific cases while being at a lower cost.  Photo by Tobias Bjørkli via Pexels  SLMs can be more efficient SLMs are faster in inference speed, and they also require less memory and storage.    SLMs and cost Small Language models can run on less powerful machines, making them more affordable. This could be ideal for experimentation, startups and/or small size companies. Here is a short list Tiny Llama. The 1.1B parameters AI Model, trained on 3T Tokens. Microsoft’s Phi-2. The 2.7B parameters, trained on 1.4T tokens. Gemini Nano.  The 6B parameters. Deepseek Coder

This blog uses cookies to improve your browsing experience. Simple analytics might be in place for pageviews purposes. They are harmless and never personally identify you.

Agreed