Skip to main content

AI bias

[PLACEHOLDER]

Objectivity can be challenging. Machines are not shielded from this by any means.

As humans we are leveraging technology in a progressive manner, making our lives easier, becoming an extension of ourselves in our day-to-day existence. By trying to simplify things, complexity creeps in (it is ironic, I know!), and as we try to create something for the good, very often it can be used to go against the principle upon why they were created in the first place.

 

Photo by Pavel Danilyuk from Pexel

Therefore, as creators of this technology, usually with the best intentions, it is understandable when model predictions become susceptible to bias.

Those in charge of building the models need to be aware of the common human biases that will find their way into the data used, allowing them to take proactive mitigation steps.

To help remove those biases then we need to have structure. A framework that allows us to build AI systems in an ethical manner that can benefit our communities. AI ethics is that “set of guidelines that advise on the design and outcomes of Artificial Intelligence (AI)”.

AI and bias

Algorithm bias “describes systematic and repeatable errors in a computer system that create unfair outcomes” - Wikipedia.

Putting close attention to the algorithms, and the data, selected for the implementation of the solution “X” allows to identify, prevent and/or mitigate real concerns, such as systematic and unfair discrimination.
AI bias can happen due to cognitive biases, which is an unconscious error in thinking that leads you to misinterpret information from the world around you, affecting the rationality and accuracy of decisions and judgement.

The teams in charge of training the models can be ingesting those biases through the data collected.
Note: The use of incomplete data for data modelling training is another potential way to have AI bias as your outcome.

The use of incomplete data for data modeling training is another potential way to have AI bias as your outcome


AI bias types in ML 

Here are a group of bias types that can be found in data (Go to the Google Developers link in our references section for more details and examples): 

Automation bias Selection bias Group Attribution bias Implicit bias


Reporting bias

When the frequency of events, properties, and/or outcomes captured in a data set does not accurately reflect their real-world frequency.

Automation bias

a tendency to favour results generated by automated systems over those generated by non-automated systems.

Selection bias

Occurs if a data set's examples are chosen in a way that is not reflective of their real-world distribution.

Group Attribution bias

A tendency to generalize what is true of individuals to an entire group to which they belong.

Implicit bias

occurs when assumptions are made based on one's own mental models and personal experiences that do not necessarily apply more generally.


Reference

Trending posts

Democratizing AI

Democratizing AI is all about empowering others to use it, by making it available to them. Audiences, such as marketers in a company, will be able to access AI capabilities as part of their MarTech solutions, without the need of being technical. It could also be schools, where the younger generations are learning how to use it in responsible, secure, innovative, and creative ways. This is the year where companies, after discovery phases and teams experimenting, are looking to activate and take advantage of the AI advances. Generated with Microsoft Designer   And so, questions emerge, such as “What to democratize when leveraging AI?” There are common scenarios, as well as specific ones, that will depend on the company, and the industry they belong to. A common scenario, seen in many industries, when democratizing data is the data visualization and reporting . In digital marketing, as an example, data scientists and data analysts can automate reporting, making them available to the c...

SLA-SLO-SLI and DevOps metrics

Companies are in need of the metrics that will allow them to stay in business by making sure they meet the expectations of their customers. The name of the game is higher customer satisfaction by winning their trust and loyalty. To do so, you want to provide good products and services. Therefore you need to find ways to monitor performance, drive continuous improvements and deliver the quality expected by the consumer in this highly competitive market. Photos from AlphaTradeZone via Pexel and Spacejoy via Unsplash SLAs, SLOs and SLIs are a good way to achieve the above. They allow clients and vendors to be on the same page when it comes to expected system performance. If we go one level deeper, vendors/providers work on NFRs (Non-Functional Requirements) when working on their solutions. NFRs define the quality attributes of a system. I bring them up because the relationship between them and the SLAs is that they provide, in a way, foundational aspects for the SLA-SLO-SL...

Take a break on zero emission day 2024

 Do you know how much you contribute to the daily emissions in your city? How much does the city you live in contribute within your country? How much does your country contribute to the emissions on our planet? Do you know its impact? Do you know why we have a zero emission day? Photo by Pixabay via Pexels Let us start by getting our acronyms right, shall we? You may have heard the term GHG emissions, wondering what that means. GHG stands for Green House Gas. These gases are part of the cause of the rising temperature on Earth. What is interesting about them  is that they absorb infrared radiation resulting in the greenhouse effect. Within the greenhouse gases you find carbon dioxide, methane, nitrous oxide, ozone, water vapour. The vast majority of carbon dioxide emissions by humans come from the burning of fossil fuels. Key sectors to consider for GHG Fuel Exploitation Power Industry Transport Waste Agriculture Buildings Industry combustion and processes Top GHG emissions...

Effective framework to resolve conflict in the Workplace

 Conflicts are a part of our daily lives and are often unavoidable at work. Therefore, it's essential to have the tools to effectively manage conflicts and leverage them to our advantage - to spur new ideas, challenge and strengthen our beliefs, and evolve our perspectives when necessary. However, conflicts often trigger our fight-or-flight response and can cause chronic stress and mental fatigue and diminish our productivity. Having the right tools can help us face conflicts confidently.  AI Generated with Microsoft Copilot + Designer by Beolle   Recently, I took a course from Harvard ManageMentor® * to enhance my conflict resolution skills. I summarized the key takeaways from the course in the framework below to help you better prepare for resolving conflicts. The framework consists of six (6) parts Identify the type of conflict   Identify your own and your counterpart's conflict styles   Determine how you want to address the conflict   Prepare to resolve...

This blog uses cookies to improve your browsing experience. Simple analytics might be in place for pageviews purposes. They are harmless and never personally identify you.

Agreed