Skip to main content

Apple's App Tracking Transparency sealing Meta's fate

[PLACEHOLDER]

If you have been following the recent news on Meta (formerly Facebook) you may have read that Meta recently projected their ad revenue will be cut by a staggering $10 billion in 2022 due to Apple’s new App Tracking Transparency feature (also known as ATT). This has resulted in Meta’s stock to plummet by over 20%.

Photo by julien Tromeur on Unsplash - modified by Beolle

So what is Apple’s ATT and how does it impact ad revenue?

Apple has been releasing multiple privacy features for the last few years. This included Apple’s Mail Privacy Protection and Apple’s App Tracking Transparency feature. You can learn more about Apple’s Mail Privacy Protection in our earlier post by clicking here

Apple’s App Tracking Transparency (ATT) was launched in iOS 14.5 and iPadOS 14.5 where it prompted users to select if they wanted the app to track their activities across other apps on the device. The prompt is displayed when the user opens an app like Facebook or Instagram for the first time on iOS 14.5 or higher. When prompted if user selects not to be tracked then the user’s activities across other apps cannot be tracked thus significantly lowering the efficacy of the ads presented to the user by ad platforms like Meta. This in turn reduces the conversion of the ads resulting in reduced revenue for the ad platform. 

Given that Meta relies heavily on ad revenues from their portfolio of apps on mobile devices ATT seems to be having a disproportionate impact on Meta and similar social media platforms. Post Meta’s earnings call similar social media platforms like Snapchat, Twitter and Pinterest also saw a significant dent in their stock price.

This also exposed the influence of Apple on companies like Meta, Snap, Twitter and Pinterest due to the sheer volume of apple devices on which these companies rely on their advertising revenue.

What do you think? How would Meta adapt to these privacy changes in the coming months?

References:

Trending posts

Democratizing AI

Democratizing AI is all about empowering others to use it, by making it available to them. Audiences, such as marketers in a company, will be able to access AI capabilities as part of their MarTech solutions, without the need of being technical. It could also be schools, where the younger generations are learning how to use it in responsible, secure, innovative, and creative ways. This is the year where companies, after discovery phases and teams experimenting, are looking to activate and take advantage of the AI advances. Generated with Microsoft Designer   And so, questions emerge, such as “What to democratize when leveraging AI?” There are common scenarios, as well as specific ones, that will depend on the company, and the industry they belong to. A common scenario, seen in many industries, when democratizing data is the data visualization and reporting . In digital marketing, as an example, data scientists and data analysts can automate reporting, making them available to the c...

Productivity framework for 2024

Recently I was at a Christmas party and I found myself giving advice to a friend on being more productive. I shared the approaches that I take which helped me become more productive at work and in my personal life. The conversation with my friend inspired me to share my approaches in this blog .  Photo by Moose Photos from Pexels   My productivity framework has five key pillars and to remember them I use the mnemonic, POFOR = P lan your tasks, O rganize yourself, F ocus on your tasks, O ptimize yourself with habits and R eflect to ensure you are being productive on the right tasks. Plan Planning is very crucial as it sets the tone for the rest of the pillars. I always found I was more productive when I planned my tasks compared to when I didn’t, and hence planning has become my rule of thumb. I recommend taking 30 minutes at the end of each day to plan your next day. This means prioritizing your tasks and blocking your calendar accordingly. By not doing so, you are at risk o...

Small Language Models

 Open source models will continue to grow in popularity. Small Language Models (SLMs) are smaller, faster to train with less compute.  They can be used for tackling specific cases while being at a lower cost.  Photo by Tobias Bjørkli via Pexels  SLMs can be more efficient SLMs are faster in inference speed, and they also require less memory and storage.    SLMs and cost Small Language models can run on less powerful machines, making them more affordable. This could be ideal for experimentation, startups and/or small size companies. Here is a short list Tiny Llama. The 1.1B parameters AI Model, trained on 3T Tokens. Microsoft’s Phi-2. The 2.7B parameters, trained on 1.4T tokens. Gemini Nano.  The 6B parameters. Deepseek Coder

Key insights from "Atomic Habits" by James clear

I recently finished reading "Atomic Habits" by James Clear. The book was incredibly insightful. If you are looking to improve your habits, and achieve results while you are at it, then this book is for you. It may help you form new habits, and break bad one. Without further due, here are my top three takeaways. Photo by Nataliya Vaitkevich via Pexel, adapted by Beolle Takeaway 1:  The habit-forming loop: James outlines that the habit-forming loop consists of four stages Cue . The cue triggers the brain to expect a reward and is crucial for building automatic habits. It is typically associated with time, place, or feeling. For example, feeling bored could be a cue to the habit of using social media. Craving . This is the urge resulting from the cue. Using the above example, opening the social media app is the craving initiated by the cue of boredom. Response . An example of a response is the action of opening the social media app and using it. Reward . An example of reward i...

This blog uses cookies to improve your browsing experience. Simple analytics might be in place for pageviews purposes. They are harmless and never personally identify you.

Agreed