Skip to main content

Good Read: MSDN Dependency Injection

[PLACEHOLDER]
Dependency Injection (DI) design pattern is a common used design patterns in real-time applications as it allows us to develop loosely coupled software components.
 

Photo by Scott Webb from Pexels - modified by Beolle


You have probably heard about the Factory Pattern and the separation between the interface and the implementation using services, where the client objects are often responsible for service location.
The Dependency Injection pattern is a particular implementation of Inversion of Control. Inversion of Control (IoC) means that objects do not create other objects on which they rely to do their work. Instead, they get the objects that they need from an outside source (for example, an xml configuration file).
Dependency Injection (DI) means that this is done without the object intervention, usually by a framework component that passes constructor parameters and set properties."

Paragraph from articleASP.NET MVC 4 Dependency Injection

Fantastic read about these patterns at MSDN location.

Recommend both links.

Trending posts

AGILE For DIGITAL AGENCIES

Introduction Some Digital agencies have a project process where waterfalls still plays a big part of it, and as far as I can tell, the tech team is usually the one suffering as they are at the last part of the chain left with limited budget and time for execution. I do believe that adopting an Agile approach could make a Digital Agency better and faster. In this article I’m presenting you just another point of view of why it make sense looking at Agile Methodology.  Why Agile for a Digital Agency? The Agile movement started in the software development industry, but it has being proven to be useful in others as well. It becomes handy for the type of business that has changing priorities, changing requirements and flexible deliverables. In the Digital Agency of today you need a different mindset. Creative will always play a huge role (“the bread and butter”). But the “big guys” need to understand that without technology there is no Digital Agency. Technical resources are

AI with great power comes responsibility

Generative AI continues to be front and centre of all topics. Companies continue to make an effort for making sense of the technology, investing in their teams, as well as vendors/providers in order to “crack” those use cases that will give them the advantage in this competitive market, and while we are still in this phase of the “AI revolution” where things are still getting sorted.   Photo by Google DeepMind on Unsplash I bet that Uncle Ben’s advise could go beyond Peter Parker, as many of us can make use of that wisdom due to the many things that are currently happening. AI would not be the exception when using this iconic phrase from one of the best comics out there. Uncle Ben and Peter Parker - Spiderman A short list of products out there in the space of generated AI: Text to image Dall.E-2 Fotor Midjourney NightCafe Adobe Firefly

Goal setting frameworks for Product Management - OKR and HOSKR

As a business analyst and product manager we often use various frameworks to synthesize and organize our product ideas and goals. I think of frameworks as tools in our product management tool kit which we use depending on the task at hand.  And speaking of goals, OKR is a very popular framework that I often use to set the goals for the products I am managing. However recently I participated the #ProductCon conference hosted by Product School  and I stumbled upon one of the talks in which Rapha Cohen, the CPO at Google Waze introduced a more effective framework for setting product goals. The framework is called HOSKR.  In this post I'll describe both the OKR and HOSKR frameworks in more details using examples. I hope this will provide you, our readers, more practical insights on how to effectively use these frameworks to set your product goals.  OKR OKR stands for O bjectives and K ey R esults. If you are reading this post then you are on our Beolle blog and I am going to use one o

Small Language Models

 Open source models will continue to grow in popularity. Small Language Models (SLMs) are smaller, faster to train with less compute.  They can be used for tackling specific cases while being at a lower cost.  Photo by Tobias Bjørkli via Pexels  SLMs can be more efficient SLMs are faster in inference speed, and they also require less memory and storage.    SLMs and cost Small Language models can run on less powerful machines, making them more affordable. This could be ideal for experimentation, startups and/or small size companies. Here is a short list Tiny Llama. The 1.1B parameters AI Model, trained on 3T Tokens. Microsoft’s Phi-2. The 2.7B parameters, trained on 1.4T tokens. Gemini Nano.  The 6B parameters. Deepseek Coder

This blog uses cookies to improve your browsing experience. Simple analytics might be in place for pageviews purposes. They are harmless and never personally identify you.

Agreed